富可敌国运营商都交不起5G基站电费啊
语境信息对 BERT 非常重要,它利用遮蔽语言模型(masked language model,MLM)允许表征融合左右两侧的语境,从而预训练深度双向 Transformer。 Hinton 举了一个例子:「She scromed him with the frying pan」。在这个句子中,即使你不知道 scromed 的意思,也可以根据上下文语境进行推断。
视觉领域也是如此。然而,BERT 这类方法无法很好地应用到视觉领域,因为网络最深层需要编码图像的细节。 inton 表示,自编码器是一种利用监督学习实现无监督学习的方式,其目标是使最后的重建结果与数据相匹配。编码器将数据向量转换为代码,解码器基于代码生成数据。 在高屋建瓴地介绍了自编码器的定义、训练深度自编码器之前的难点和现状之后,Hinton 着重介绍了两种自编码器类型:变分自编码器和 BERT 自编码器。 使用深度神经网络重建输入:VAE 和 BERT BERT 和变分自编码器(VAE)是无监督学习的一类典型代表,它们使用深度神经网络重建输入。
变分自编码器由韦灵思和 Kingma 于 2013 年提出,它使用多层编码器选择实数代码,然后用多层解码器重建数据。VAE 的基本构造如下图所示: Geoffrey Hinton 是谷歌副总裁、工程研究员,也是 Vector Institute 的首席科学顾问、多伦多大学 Emeritus 荣誉教授。2018 年,他与 Yoshua Bengio、Yann LeCun 因对深度学习领域做出的巨大贡献而共同获得图灵奖。 自 20 世纪 80 年代开始,Geoffrey Hinton 就开始提倡使用机器学习方法进行人工智能研究,他希望通过人脑运作方式探索机器学习系统。受人脑的启发,他和其他研究者提出了「人工神经网络」(artificial neural network),为机器学习研究奠定了基石。 那么,30 多年过去,神经网络的未来发展方向在哪里呢? Hinton 在此次报告中回顾了神经网络的发展历程,并表示下一代神经网络将属于无监督对比学习。 Hinton 的报告主要内容如下: 人工神经网络最重要的待解难题是:如何像大脑一样高效执行无监督学习。 目前,无监督学习主要有两类方法。 第一类的典型代表是 BERT 和变分自编码器(VAE),它们使用深度神经网络重建输入。但这类方法无法很好地处理图像问题,因为网络最深层需要编码图像的细节。 另一类方法由 Becker 和 Hinton 于 1992 年提出,即对一个深度神经网络训练两个副本,这样在二者的输入是同一图像的两个不同剪裁版本时,它们可以生成具备高度互信息的输出向量。这类方法的设计初衷是,使表征脱离输入的不相关细节。 Becker 和 Hinton 使用的优化互信息方法存在一定缺陷,因此后来 Pacannaro 和 Hinton 用一个判别式目标替换了它,在该目标中一个向量表征必须在多个向量表征中选择对应的一个。 随着硬件的加速,近期表征对比学习变得流行,并被证明非常高效,但它仍然存在一个主要缺陷:要想学习具备 N bits 互信息的表征向量对,我们需要对比正确的对应向量和 2 N 个不正确的向量。 在演讲中,Hinton 介绍了一种处理该问题的新型高效方式。此外,他还介绍了实现大脑皮层感知学习的简单途径。 接下来,我们来看 Hinton 演讲的具体内容。 为什么我们需要无监督学习? 在预测神经网络的未来发展之前,Hinton 首先回顾了神经网络的发展进程。
演讲一开始,Hinton 先介绍了三种学习任务:监督学习、强化学习和无监督学习,并重点介绍了无监督学习的必要性。 (编辑:鹤壁站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |