单张图像就可以训练GAN!
这里的判别器从来不将图像看做一个整体,通过这种方法,它就可以知道“真实的”图像补丁(patch)是什么样子。 这样,生成器就可以通过生成,在全局来看不同,但仅从补丁来看却相似的图像,来达到“欺诈”的目的。 在更高分辨率上工作的生成器,将前一个生成器生成的图像作为输入,在此基础上生成比当前还要高分辨率的图像。 所有的生成器都是单独训练的,这意味着在训练当前生成器时,所有以前的生成器的权重都保持不变。
这一过程如下图所示。 而在Adobe与汉堡大学的研究人员发现,在给定的时间内仅能训练一个生成器,并将图像(而不是特征图)从一个生成器传输到下一个生成器,这就限制了生成器之间的交互。 因此,他们对生成器进行了端到端的训练,也就是说,在给定时间内训练多个生成器,每个生成器将前一个生成器生成的特征(而不是图像)作为输入。
这也就是ConSinGAN名字的由来——并行的SinGAN,过程如下图所示。 然而,采取这样的措施又会面临一个问题,也就是过拟合。这意味着最终的模型不会生成任何“新”图像,而是只生成训练图像。 为了防止这种现象发生,研究人员采取了2个措施:
下图就展示了使用这两种方法实现的模型。默认情况下,最多同时训练3个生成器,并对较低的生成器,分别将学习率调至1/10和1/100。 (编辑:鹤壁站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |