加入收藏 | 设为首页 | 会员中心 | 我要投稿 鹤壁站长网 (https://www.0392zz.cn/)- 分布式云、存储数据、视频终端、媒体处理、内容创作!
当前位置: 首页 > 综合聚焦 > 编程要点 > 语言 > 正文

python怎样实现逐步回归?逐步回归实现实例分享

发布时间:2022-03-29 14:02:08 所属栏目:语言 来源:互联网
导读:文本主要分享怎样用python实现逐步回归,一些朋友可以对于逐步回归不是很了解,下面给大家简单介绍一下逐步回归以及python做逐步回归的代码。 算法介绍 逐步回归是一种线性回归模型自变量选择方法; 逐步回归的基本思想是将变量逐个引入模型,每引入一个解释
       文本主要分享怎样用python实现逐步回归,一些朋友可以对于逐步回归不是很了解,下面给大家简单介绍一下逐步回归以及python做逐步回归的代码。
 
       算法介绍
       逐步回归是一种线性回归模型自变量选择方法;
       逐步回归的基本思想是将变量逐个引入模型,每引入一个解释变量后都要进行F检验,并对已经选入的解释变量逐个进行t检验,当原来引入的解释变量由于后面解释变量的引入变得不再显著时,则将其删除。以确保每次引入新的变量之前回归方程中只包含显著性变量。这是一个反复的过程,直到既没有显著的解释变量选入回归方程,也没有不显著的解释变量从回归方程中剔除为止。以保证最后所得到的解释变量集是最优的。
       这里我们选择赤池信息量(Akaike Information Criterion)来作为自变量选择的准则,赤池信息量(AIC)达到最小:基于最大似然估计原理的模型选择准则。
 
       数据情况
       案例
       在现实生活中,影响一个地区居民消费的因素有很多,例如一个地区的人均生产总值、收入水平等等,本案例选取了9个解释变量研究城镇居民家庭平均每人全年的消费新支出y,解释变量为:
x1――居民的食品花费
x2――居民的衣着消费
x3――居民的居住花费
x4――居民的医疗保健花费
x5――居民的文教娱乐花费
x6――地区的职工平均工资
x7――地区的人均GDP
x8――地区的消费价格指数
x9――地区的失业率(%)
 
       数据
 
 
       代码
# -*- coding: UTF-8 -*-
 
import numpy as np
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.stats.api import anova_lm
import matplotlib.pyplot as plt
import pandas as pd
from patsy import dmatrices
import itertools as it
import random
 
 
# Load data 读取数据
df = pd.read_csv('data3.1.csv',encoding='gbk')
print(df)
 
 
target = 'y'
variate = set(df.columns) #获取列名
variate.remove(target) #去除无关列
variate.remove('地区')
 
#定义多个数组,用来分别用来添加变量,删除变量
x = []
variate_add = []
variate_del = variate.copy()
# print(variate_del)
y = random.sample(variate,3) #随机生成一个选模型,3为变量的个数
print(y)
#将随机生成的三个变量分别输入到 添加变量和删除变量的数组
for i in y:
 variate_add.append(i)
 x.append(i)
 variate_del.remove(i)
 
global aic #设置全局变量 这里选择AIC值作为指标
formula="{}~{}".format("y","+".join(variate_add)) #将自变量名连接起来
aic=smf.ols(formula=formula,data=df).fit().aic #获取随机函数的AIC值,与后面的进行对比
print("随机化选模型为:{}~{},对应的AIC值为:{}".format("y","+".join(variate_add), aic))
print("n")
 
 
 
#添加变量
def forwark():
 score_add = []
 global best_add_score
 global best_add_c
 print("添加变量")
 for c in variate_del:
  formula = "{}~{}".format("y", "+".join(variate_add+[c]))
  score = smf.ols(formula = formula, data = df).fit().aic
  score_add.append((score, c)) #将添加的变量,以及新的AIC值一起存储在数组中
  
  print('自变量为{},对应的AIC值为:{}'.format("+".join(variate_add+[c]), score))
 
 score_add.sort(reverse=True) #对数组内的数据进行排序,选择出AIC值最小的
 best_add_score, best_add_c = score_add.pop()
 
 print("最小AIC值为:{}".format(best_add_score))
 print("n")
 
#删除变量
def back():
 score_del = []
 global best_del_score
 global best_del_c
 print("剔除变量")
 for i in x:
 
  select = x.copy() #copy一个集合,避免重复修改到原集合
  select.remove(i)
  formula = "{}~{}".format("y","+".join(select))
  score = smf.ols(formula = formula, data = df).fit().aic
  print('自变量为{},对应的AIC值为:{}'.format("+".join(select), score))
  score_del.append((score, i))
 
 score_del.sort(reverse=True) #排序,方便将最小值输出
 best_del_score, best_del_c = score_del.pop() #将最小的AIC值以及对应剔除的变量分别赋值
 print("最小AIC值为:{}".format(best_del_score))
 print("n")
 
print("剩余变量为:{}".format(variate_del))
forwark()
back()
 
while variate:
  
#  forwark()
#  back()
 if(aic < best_add_score < best_del_score or aic < best_del_score < best_add_score):
  print("当前回归方程为最优回归方程,为{}~{},AIC值为:{}".format("y","+".join(variate_add), aic))
  break
 elif(best_add_score < best_del_score < aic or best_add_score < aic < best_del_score):
  print("目前最小的aic值为{}".format(best_add_score))
  print('选择自变量:{}'.format("+".join(variate_add + [best_add_c])))
  print('n')
  variate_del.remove(best_add_c)
  variate_add.append(best_add_c)
  print("剩余变量为:{}".format(variate_del))
  aic = best_add_score
  forwark()
 else:
  print('当前最小AIC值为:{}'.format(best_del_score))
  print('需要剔除的变量为:{}'.format(best_del_c))
  aic = best_del_score #将AIC值较小的选模型AIC值赋给aic再接着下一轮的对比
  x.remove(best_del_c) #在原集合上剔除选模型所对应剔除的变量
  back()

(编辑:鹤壁站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章
      热点阅读